

Lehrsystem rc2000 - µLAB

Module

Tel./Fax: 00420-244 464 176

00420-603 158 544

info@rcdidactic.cz

www.rcdidactic.cz

Mobil:

E-mail:

Web:

INHALT

0. System rc2000 ——————————————————————————————————	
Eigenschaften und Benutzung des Systems rc2000	0.1
1. Gerätemodule	
Messmodul	1.1
Programm rc2000	1.2
Funktionsgenerator	1.3
Programmierbare Spannungsquelle	1.4
Voltmeter DC & AC RMS	1.5
Drehstrommodul	1.6
Wheatstone-Brücke	1.7
2. Aktivemodule	
Elementemodul	2.1
Elementemodul mit Umschalter	2.2
Operationsverstärker	2.3
Instrumentenverstärker	2.4
Buffer	2.5
Bipolartransistor NPN	2.6
Bipolartransistor PNP	2.7
Unipolartransistor JFET - N	2.8
Thyristor	2.9
U/I Umwandler	2.10
3. Passivemodule ————————————————————————————————————	
Widerstandsdekade 1 (20-1019) Ω	3.1
Widerstandsdekade 2 (1-999) k Ω	3.2
Kondensatordekade	3.3
Kondensatorset	3.4
Spule	3.5
Transformator	3.6
4. Regelungsmodule	
Motor-Generator-Regelstrecke	4.1
PID Regler	4.2
Differenzglied	4.3
Verzögerungsglieder	4.4

5. Digitalmodule	
Frequenzgenerator	5.1
Logselektor	5.2
Logprobe	5.3
Universalmodul 74xxx	5.4
6. Testmodule	
Testmodul 1x16	6.1
Testmodul 1x40	6.2
7. Netzgeräte ————————————————————————————————————	
5V DC Spannungsquelle	7.1
24V DC Spannungsquelle	7.2
8. Modulplatten	
Modulplatte 1	8.1
Modulplatte 2	8.2
9. Kabel	
Verbindungskabel	9.1
Doppelkabel und Adapterkabel	9.2
Versorgungskabel	9.3
10. Diskrete Bauelemente	
Widerstände	10.1
Kondensatoren	10.2
Weitere Bauelemente	10.3
Sätze	10.4

Lehrsystem rc2000 - µLAB Module

Eigenschaften und Benutzung des Systems rc2000

Arbeitsplatz -

0.1

Eigenschaften -

- Modularer Aufbau mit voller Kompatibilität aller Module
- Standardsätze oder Sätze auf Kundenwunsch
- Eine einzige Speisungsspannung 5V (mit Ausnahme der Motor-Generator Regelstrecke)
- Intuitive Änderung einer Variable und Modus durch Tasten
- Robuste Tasten mit Mikroschaltern und Metalltasten
- Vergoldete Kontakte 1,5-mm Typ HYPCON
- Anzeige von Werten durch 7-Segment LED- Anzeige
- Ideale Eingangs- und Ausgangsparameter
- · Hohe Genauigkeit der Messung
- Schutz gegen falsche Verkabelung und Überlastung
- Alle Anschlüsse sind bis ± 15 V geschützt
- Anbindung des Systems an PC's mittels USB

Philosophie des Systems -

Das Lehrsystem $rc2000 - \mu LAB$ umfasst eine Vielzahl von elektronischen Modulen, die den Aufbau von vielen unterschiedlichen elektrischen und elektronischen Schaltungen ermöglichen.

Dank der hohen Genauigkeit der einzelnen Module ergibt sich eine genaue Übereinstimmung der praktischen Experimente mit der theoretischen Berechnung, das heißt, die Messungen sind "ideal". So ist es möglich die Auswirkung definierter Fehler in der zu untersuchenden Schaltungen zu beobachten. Die in der Praxis oftmals nicht idealen Bedingungen können ausgehend vom idealen System definiert, erzeugt und untersucht werden.

Durch die Verwendung präziser Bauteile und die robuste Konstruktion der einzelnen Module wird die hohe Zuverlässigkeit auch unter den experimentellen Bedingungen im Laboreinsatz sichergestellt. Dazu tragen mechanisch widerstandsfähige, vergoldete Kontakte, Modulsicherungen gegen Falschspannungen und eine Betriebsspannung von nur 5V bei. Die Langzeitstabilität der Module über 20 Jahre wurde in der Praxis vielfach nachgewiesen.

Das System ist geeignet für den Unterricht an Berufsschulen, Gymnasien, technischen Hochschulen und Universitäten mit elektrotechnischem Fokus, insbesondere in den folgenden Bereichen:

ELEKTROTECHNIK

DIGITALTECHNIK

MESSTECHNIK

MECHATRONIK

Die Hauptaufgabe des Systems ist eine anschauliche Erläuterung der Grundlagen der Elektrotechnik und Elektronik. Große Aufmerksamkeit wird daher auf gute didaktische Eigenschaften des Systems gelegt, insbesondere auf die Methoden der Darstellung der Messungen. Die Messergebnisse können mit Hilfe des Messmoduls ADDU und dem Programm rc2000 auf dem PC Bildschirm oder mit einem Beamer angezeigt werden. Der Ausdruck, das Speichern oder der Export von Bildern und Daten ist möglich.

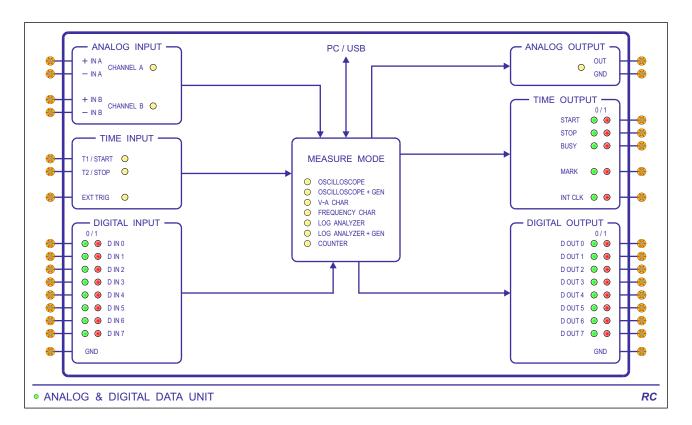
Mehr als 300 Berufsschulen, Gymnasien, technische Hochschulen und Universitäten in Tschechien, Slowakei, Polen, Deutschland, Österreich, Belgien, Rumänien und Island benutzen unser System.

Allgemeine Parametern -

		Wert	
		min	max
	Speisespannung (V)	4,8	5,5
_	Umgebungstemperatur für Benutzung (°C)	15	35
Das ganze System	Abmessungen des kleineren Moduls (mm)	50 x 10	00 x 42
Gystem	Abmessungen des grösseren Moduls (mm)	100 x 100 x 42	
	Abmessungen des grossen Moduls (mm)	250 x 150 x 42	
	Spannungsbereich der Messung (V)	± 10	
Analog	Frequenz (Hz)	0	10 k
Komponenten	Eingangswiderstand (Ω)	100 k	10 G
	Ausgangswiderstand (Ω) < 0,1),1
Digital Komponenten	Taktfrequenz (Hz)	-	1 M
	Eingangswiderstand (Ω)		> 10 k
	Ausgangswiderstand (Ω)	> 2 k	< 360

Speisespannung...... Mit Ausnahme der +24 V Quelle für die Motor-Generator-Regelstrecke. Eingangswiderstand...... Abhängig von Typ des Moduls.

Nutzungsrichtlinien -


- · Das System benötigt keine spezielle Wartung
- Die spezifizierte Funktion des Systems wird nur mit dem vom Hersteller gelieferten Netzgerät garantiert
- Demontieren Sie die Komponenten nicht, öffnen Sie die Module nicht und führen Sie selbst keine Reparaturen durch
- Im Fehlerfall senden Sie das Produkt zu uns und die Reparatur erfolgt im Kulanzwege
- Vermeiden Sie den Kontakt mit Spiritus oder ähnlichen Lösungsmittel zur Reinigung
- Reinigen Sie das System mit einem weichen feuchten Tuch

Kundenservice —

- 3 Jahre volle Garantie
- Kostenlose Upgrades des Programms rc2000
- Entwicklung und Herstellung neuer Module nach Kundenwunsch
- Vorbereitung der Aufgaben für System rc2000
- Individuelle Beratung, Unterstützung und Schulung bei der Anwendung des Systems rc2000

1.1 Messmodul ADDU

Paneel -

Eigenschaften -

- Das Modul ermöglicht die Erzeugung, Messung und Darstellung analoger und digitaler Signale auf einem über USB verbundenen PC mit dem Programm rc2000
- Für Analogsignale stehen zwei differenzielle Eingangskanäle und ein Kanal zur Erzeugung von Signalen zur Verfügung
- Für Digitalsignale gibt es jeweils acht Ein- und Ausgänge (TTL-Standard)
- Das PC Programm ermöglicht die Wahl von sieben Messmethoden:

OSCILLOSCOPE	Zweikanaliges differenzielles Oszilloskop
OSCILLOSCOPE + GEN	Einkanaliger Spannungsgenerator und einkanaliges diff. Oszilloskop
V-A CHARACTERISTICS	U-I Kennlinien Messung
FREQUENCY CHARACTERISTICS	Amplituden- und Phasengang Messung
LOGIC ANALYZER	Achtkanaliger logischer Analysator
LOGIC ANALYZER + GEN	Achtkanaliger logischer Generator und achtkanaliger logischer Analysator
COUNTER	Zweikanaliger Zähler

Abmessungen (250 x 150 x 42) mm. Gewicht 740g

Gerätemodule Messmodul

Zubehör

• USB-Kabel, Kabel zur Spannungsversorgung (2Stk.)

Parameter —

OSCILLOSCOPE

			Werte	
			min	max
		Z _{IN} (MΩ/pF)	10	/ 50
		Spannungsbereich (V)	± 100m	± 10
		Skalierung (V/div)	50m	5
ANALOG	OLIA OLID	Frequenzbereich (Hz)	0 - 10k	
INPUT CHA, C	CHA, CHB	Abtastrate (Sa/s)	1	1M
		Zeitbasis (s/div)	100μ	100
		Trigger	CHA, Ch Level,	HB, EXT Edge

Frequenzbereich..... Senkung 0,1 dB

OSCILLOSCOPE + GEN

			We	erte	
				min	max
		Z _{IN} (MΩ/pF)		10	/ 50
		Spannungsbereich (V)	BIP	± 100m	± 10
		Spannungsbereich (v)	UNI	0 - 100m	0 - 10
ANALOG	СНВ	Verstärkung (V/div)	BIP	50m	5
INPUT	CIB	verstarkung (v/div)	UNI	25m	2,5
		Frequenzbereich (Hz)		0 - 10k	
		Abtastrate (Sa/s)		1	1M
		Zeitbasis (s/div)		100μ	100
		I _{MAX} (mA)		2	0
		$R_{OUT}(\Omega)$		< (),1
		Spannungsbereich (V)	BIP	± 100m	± 10
			UNI	0 - 100m	0 - 10
ANALOG OUTPUT	OUT	Verstärkung (V/div)	BIP	50m	5
0011 01		verstarkung (v/uiv)	UNI	25m	2,5
		Frequenzbereich (Hz)		0 -	10k
		Abtastrate (Sa/s)	·	1	1M
		Samples im Zyklus (Sa)		50	00

Frequenzbereich..... Senkung 0,1 dB

V-A CHARACTERISTICS

				We	erte
				min	max
		Spannungsbereich (V)		± 100m	± 10
	CHA	Verstärkung (V/div)		50m	5
		Frequenzbereich (Hz)		0 -	10k
	СНВ	Messwiderstand (Ω)		1, 10, 100), 1k, 10k
ANALOG INPUT		Strombereich (A)	1Ω	± 100m	± 10
1111 01			10k	± 10μ	± 1m
		Verstärkung (A/div)	1Ω	50m	5
		verstarkung (A/div)	10k	5μ	500μ
		Frequenzbereich (Hz)		0 -	10k
ANALOG	OUT	Spannungsbereich (V)		±	10
OUTPUT	001	Abtastung (s/div)		0,5m	500

Frequenzbereich..... Senkung 0,1 dB

FREQUENCY CHARACTERISTICS

		Werte		
			min	max
ANALOG		Frequenzbereich (Hz)	10 - 100	10 - 10k
	OUT, CHB	Übertragung (dB)	± 15	± 45
		Phasenbereich (°)	± 45	± 180
OUTPUT		U _{OUT} (Sinus) (V)	100m	10

LOGIC ANALYZER

		Werte		
			min	max
		Mode	Zeitar	nalyse
		U _{IN}	TTL	
DIGITAL D IN 0 INPUT D IN 7	$R_{IN}(\Omega)$	> 10k		
	Trigger	8	bit	
		Abtastung (Sa/s)	1	1M
		Zeitbasis (s/div)	100μ	100

LOGIC ANALYZER + GEN

			We	erte
			min	max
DIGITAL INPUT	D IN 0 - D IN 7	(Siehe LOGIC ANALYZER)		
DIOLEAL	D OUT 0	U _{OUT}	T	ΓL
OUTPUT D OUT	-	$R_{OUT}(\Omega)$	33	30
	D OUT 7	Abtastung (Sa/s)	1	1M

Gerätemodule Messmodul

Parameter —

COUNTER

		Werte		
			min	max
		U _{IN}	Т	ΓL
TIME INPUT		Messbereich N _{MAX} (-)	300	60 000
	T1, T2	Messzeit (s)	5	500
	11,12	Zeitbasis (s/div)	1	100
		Pulsbreite (ns)	50	-
		Trigger	T1, T2, EXT	

Bedienung ————

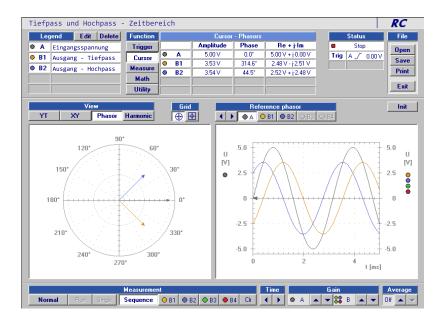
1. FUNKTIONSBLÖCKE

MEASURE UNIT	Ausgewählter Messmodus	
ANALOG INPUT	Eingänge der differenziellen Spannungsmessung	
TIME INPUT	Triggereingänge, Zählereingänge	
DIGITAL INPUT	Eingänge des logischen Analysators	
ANALOG OUTPUT	Ausgang des analogen Signalgenerators	
TIME OUTPUT	Synchronisationsausgänge	
DIGITAL OUTPUT	Ausgänge des Generators der Logiksignale	

2. ANFANGSBEDINGUNGEN

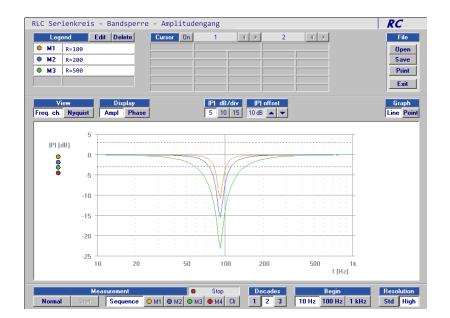
Anfangsbedingungen sind von Steuerungsprogramm je nach gewähltem Messmodus einstellbar

Alle Blöcke	o	Gewählter Messmodus oder aktiver Eingang/Ausgang
Alle Blocke	0/1	Anzeige des Zustandes des jeweiligen digitalen Eingangs/Ausgangs

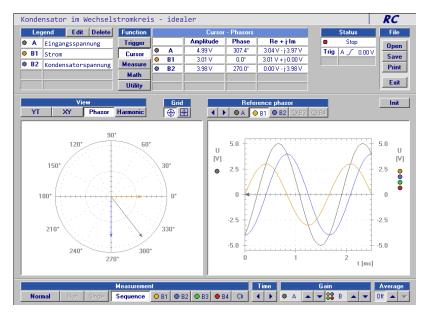

Eigenschaften -

- Das PC Programm rc2000 und das Messmodul ADDU ermöglichen die Erzeugung und Messung der analogen und digitalen Signale
- Wahl von sieben Messmethoden (die Startseite des Programms)
- Intuitive Bedienung, übersichtliche und anschauliche Darstellung von Messdaten in verschiedenen Präsentationen (Zeitdiagramm, Cursor, Zeigerdiagramme, XY Modus, ...)
- Harmonische Analyse, Sequenzmessung mit Variation von Parametern in einem Bild (Trendmessung)
- Möglichkeit der Nutzung des Beamers, einfache Druckfunktion und Speicherung der Messergebnisse und -einstellungen
- Separates Programm zur Einstellung der Kommunikation zwischen Messeinheit ADDU und PC
- Messmethoden:

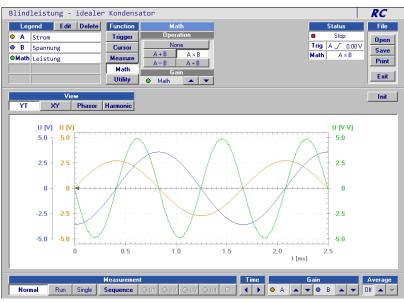
OSCILLOSCOPE	Zweikanaliges differenzielles Oszilloskop
OSCILLOSCOPE + GEN	Einkanaliger Spannungsgenerator und einkanaliges diff. Oszilloskop
V-A CHARACTERISTICS	U-I Kennlinien Messung
FREQUENCY CHARACTERISTICS	Amplituden- und Phasengang Messung
LOGIC ANALYZER	Achtkanaliger logischer Analysator
LOGIC ANALYZER + GEN	Achtkanaliger logischer Generator und achtkanaliger logischer Analysator
COUNTER	Zweikanaliger Zähler


• Systemanforderungen: PC mit MS Windows (alle Versionen), USB

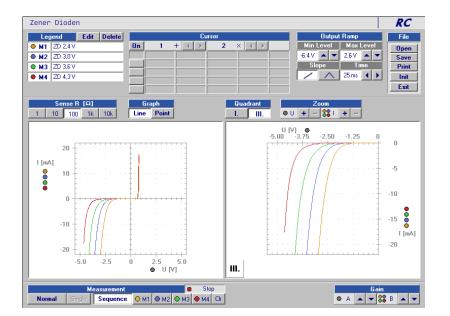
Bildschirm -


ELEKTROTECHNIK

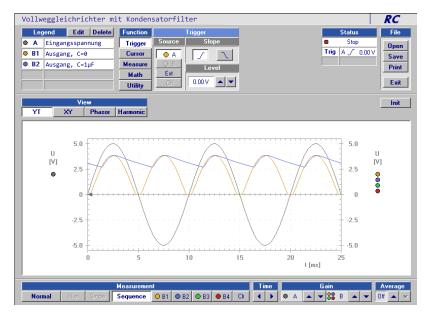
Tiefpass und Hochpass


ELEKTROTECHNIK

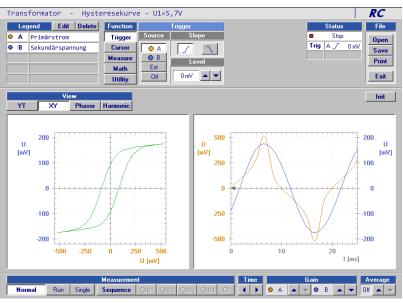
RLC Bandsperre


ELEKTROTECHNIK

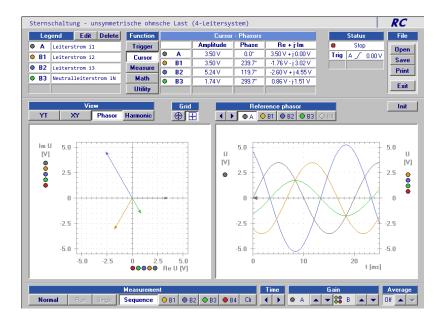
Kondensator im Wechselstrom


ELEKTROTECHNIK

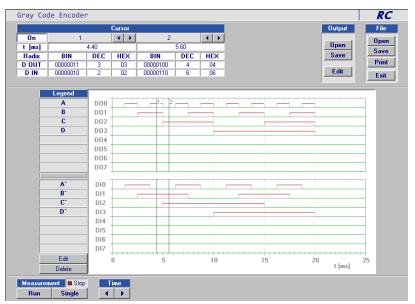
Blindleistung im Kondensator


ELEKTRONIK

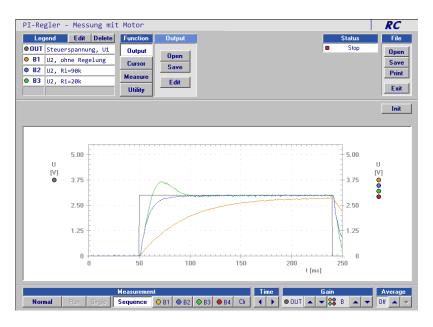
Zener Dioden


ELEKTRONIK

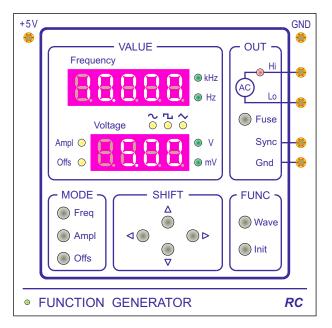
Vollweggleichrichter mit Filter


ELEKTROTECHNIK

Hysteresekurve


ELEKTROTECHNIK

Unsymmetrische Sternschaltung


DIGITALTECHNIK

Gray Code Encoder

REGELUNG

Motor mit PI-Regler

Eigenschaften -

- Einstellbarer Funktionsgenerator (Sinus-, Dreieckund Rechteckspannung). Präzise und stabile Frequenzeinstellung (Direct Digital Synthesis Methode)
- Genaue inkrementelle Einstellung von allen Parametern wie Frequenz, Amplitude und Offset (Gleichanteil)
- Potentialfreier Generatorausgang
- Ausgangswiderstand R_{OUT} < 100mΩ
 (Generator verhält sich als ideale Quelle)
- Ausgang gegen Überlastung elektronisch geschützt. Die Steuereinheit schaltet die Ausgangsspannung im Fehlerfall aus
- Synchronisationsausgang Sync dient zum Starten der Messung
- Abmessungen 100 x 100 x 42 mm. Gewicht 240g

Parameter -

	Werte		Genauigkeit	
	min	max		
Frequenz (Hz)	0,01 10 000		± 0,001 %	
Amplitude (V)	0,05	10	± 1,0 %	
Offset (V)	-9,95	9,95	± (1%A + 1%O + 2mV)	
Signalform	~ □ ~		-	
I _{OUT} (mA)	-	22	-	
$R_{OUT}\left(\Omega\right)$	< 0,1		-	

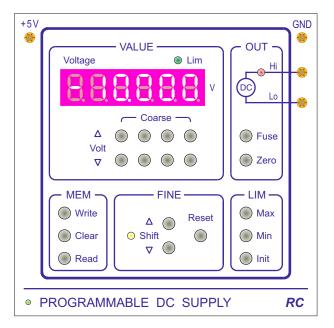
Temperaturbereich 15°C - 35°C. Aufwärmzeit 15 Minuten.

Offset..... A - eingestellte Amplitude, O - eingestellter Offset.

Gerätemodule Funktionsgenerator

Bedienung -

1. FUNKTIONSBLÖCKE


VALUE	Einstellung und Spannungsdarstellung	
OUT	Ausgang mit Schutz gegen Überlastung	
MODE	Parameterwahl	
SHIFT	Position- und Werteänderung	
FUNC	Funktionswahl und Einstellung der Anfangsbedingungen	

2. ANFANGSBEDINGUNGEN

Nach dem + 5V Anschluss oder nach dem Betätigen der Init -Taste werden folgende Parameter eingestellt:

Frequenz	Amplitude	Offset	Funktion
100 Hz	5,00 V	0,00 V	Sinus

	• kHz	Anzeige der Einheit. Wenn blinkend, verschiebt		
	• Hz	sich der Wert um eine Grössenordnung		
	• V	Anzeige der Einheit. Wenn blinkend, verschiebt		
VALUE	• mV	sich der Wert um eine Grössenordnung		
		Anzeige des Ausgangssignals		
	Ampl	Anzeige der Amplitude		
	Offs	Anzeige des Offset		
	○ Freq	Anzeige und Einstellung der Frequenz		
MODE	O Ampl	Anzeige und Einstellung der Amplitude		
	Offs	Anzeige und Einstellung des Offset		
SHIFT	400Þ	Wahl der Einstellungsposition.		
SHIFT	△ ○ ○ ▷	Werteänderung um ± 1.		
FUNC	O Wave	Wahl der Form des Ausgangssignals		
FUNC	O Init	Rücksetzen auf Standardeinstellungen		
OUT	-	Bei Leuchten ist der Ausgang wegen Kurzschluss oder Überlastung ausgeschaltet		
001	O Fuse	Rücksetzen der Überlastungssicherung		

Eigenschaften -

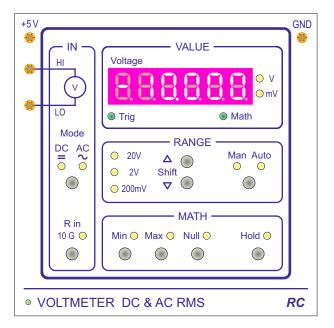
- Durch Mikroprozessor gesteuerte Quelle für hochstabile rauscharme Gleichspannung
- Präzise und stabile Einstellung der Ausgangsspannung (durch Tastenblock "Coarse", Feineinstellung im Block "FINE")
- Potentialfreier Ausgang der Spannungsquelle (DC)
- Niedriger Ausgangswiderstand R_{OUT} < 100mΩ (das Modul verhält sich als ideale Spannungsquelle)
- Der Ausgang ist durch elektronische Sicherung gegen Überlastung geschützt.
- Speicher (MEM) für acht typische Werte der Ausgangsspannung
- Abmessungen 100 x 100 x 42 mm. Gewicht 230g

Parameter -

	Bereich		Genauigkeit
	min	max	
Spannung (V)	-10,000 10,000		± (0,02 % + 0,5 mV)
Schritt (mV)	1,00		± 5 %
Schritt der Feinstellung (μV)	80		± 10 %
I _{OUT} (mA)	-22 22		± 5 %
$R_{OUT}\left(\Omega\right)$	< 0,1		-

Temperaturbereich 15°C - 35°C. Aufwärmzeit 15 Minuten.

Bedienung —


1. FUNKTIONSBLÖCKE

VALUE	Einstellung und Anzeige der Ausgangsspannung	
FINE	Feineinstellung der Spannung	
OUT	Ausgang + Sicherung	
MEM	Speicher von 8 Spannungswerten	
LIM	Begrenzung der Spannung zum Schutz von Bauelementen	

2. ANFANGSBEDINGUNGEN

Nach dem + 5V Anschluss oder nach dem Zero Tasten wird der Ausgang auf 0,000V eingestellt

	• Lim		Mindestens ein Limit ist aktiv		
VALUE	Coarse		Ändert den Spannungswert in der gewählten Dezimalstelle um +/- 1		
	•	Shift	Feinstellung ist nicht NULL Es ist immer niedriger als 1 mV und addiert sich zum Wert auf Zeiger		
FINE	4 ○ ○ ▷	Still	Ändert den Ausgangswert um +/- 1 Schritt der Feinstellung		
	0	Reset	Reset der Feinstellung		
	_	•	Ausgang ist wegen Überlastung ausgeschaltet		
OUT	O Fuse		Rücksetzen der Überlastungssicherung		
	○ Zero		Stellt 0,000 V am Ausgang ein		
	O Write		Speichert den Wert in der nächsten Speicherzelle		
MEM	O Clear		Löscht alle gespeicherten Spannungswerte		
	O Read		O Read		Liest den gespeicherten Wert ein. Durch wiederholtes Drücken der Taste wird der gewünschten Speicher ausgewählt
	O Max		Stellt den aktuellen Spannungswert als obere Begrenzung (Upper Limit) ein		
LIM	LIM O Min O Init		Stellt den aktuellen Spannungswert als untere Begrenzung (Lower Limit) ein		
			Deaktivieren der Begrenzungen, voller Spannungsbereich ist verfügbar		

Eigenschaften -

- DC 4,5 stelliges Voltmeter
- AC 3,5 stelliges True RMS Voltmeter, 10 Hz - 10 kHz
- DC Eingangswiderstand

 R_{IN} = 10 M Ω (Bereich: 200 mV, 2 V, 20 V) umschaltbar für die Messbereiche R_{IN} = 10 G Ω (Bereich: 200 mV, 2 V)

AC Eingangsimpedanz

 Z_{IN} = 10 M Ω / 50 pF

- Automatische oder manuelle Wahl des Bereiches
- Mathematische Funktionen
- Abmessungen 100 x 100 x 42 mm. Gewicht 260g

Parameter -

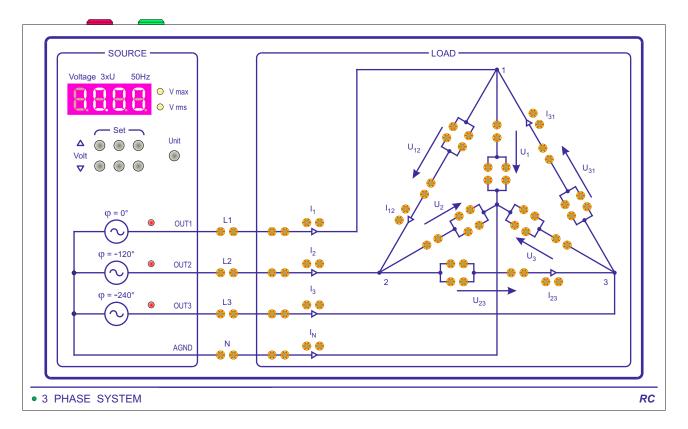
		Ber	eich	Genauigkeit
		min	max	
	Display	4,5 -	stellig	-
		200	mV	± (0,05 % + 5 digit)
DC	Messbereiche	2	V	L (0 04 0/ L 2 digit)
		20 V		± (0,04 % + 3 digit)
	$R_{IN}(\Omega)$	10 M		-
	R _{IN} 10G (Ω)	> 10 G		-
	Display	3,5 -	stellig	-
		200	mV	± (1,0 % + 5 digit)
AC	Messbereiche	2 V		1 (0 0 0/ 1 E digit)
AC		20 V		± (0,8 % + 5 digit)
	Z _{IN} (MΩ/pF)	10	/ 50	-
	Frequenzbereich (Hz)	10	10 k	-

Temperaturbereich 15°C - 35°C. Aufwärmzeit 15 Minuten.

 R_{IN} 10G..... Funktion verfügbar für DC Bereiche 200 mV und 2 V.

Bedienung —

1. FUNKTIONSBLÖCKE


IN	Eingang des Voltmeters, Messmode Einstellung		
VALUE	Darstellung des gemessenen Wertes		
RANGE	Bereichswahl		
MATH	Mathematische Funktionen und Funktion Hold		

2. ANFANGSBEDINGUNGEN

Nach Anschluss des Moduls zur Speisung sind folgende Anfangsbedingungen eingestellt:

Messmode	DC	Bereich	Auto	$R_{IN}\left(\Omega\right)$	10 M
----------	----	---------	------	-----------------------------	------

IN	Mode DC AC	Auswahl und Anzeige des aktivierten Messmodus (DC oder AC)			
	° R _{IN} 10G	Eingangswiderstand 10 G Ω (für DC Bereiche 200mV und 2V)			
	• V	Anzeige der Einheit der Darstellung			
VALUE	• mV	Anzeige der Einneit der Darstellung			
VALUE	Math	Irgendeine mathematische Funktion ist aktiv			
	• Trig	Blinkt im Abtastzeitpunkt			
	• 20V				
	• 2V	Anzeige des gewählten Messbereiches			
RANGE	• 200mV				
RANGE	○ Shift	Umschaltung zu höherem oder niedrigerem Spannungsbereich			
	Man Auto O	Umschaltung zwischen manueller und automatischer Wahl des Bereiches			
	o Min	Darstellung des minimalen gemessenen Wertes			
MATH	o Max	Darstellung des maximalen gemessenen Wertes			
IVIATT	° Null	Wahl des Bezugswerts der Messungen			
	• Hold	Einfrieren der Anzeige			

Eigenschaften -

- Das Modul ermöglicht das Studium der Eigenschaften des Drehstromsystems
- Das Modul beinhaltet zwei Grundteile: einen Spannungsquellenteil (SOURCE) und einen Lastteil (LOAD).
 Beide Teile lassen sich beliebig zusammenschalten.
- Ein Prozessor steuert den Generator, der drei phasenverschobenen sinusförmige Spannungen ausgibt.
- Inkrementale Einstellung der Ausgangsspannung
- Wahlweise Anzeige des Scheitelwerts U_{MAX} oder des Effektivwert (RMS) U_{RMS} der Spannung (Umschaltung mit der Taste Unit).
- Potentialfreie Generatorausgänge, d.h. keine Probleme mit Masseschleifen bei der Messung.
- Durch niedrige Ausgangswiderstände wirkt der Generator als ideale Spannungsquelle.
- Ausgänge sind gegen Überlastung elektronisch gesichert. Überlastung wird durch eine rote LED angezeigt.
- Das Verbindungsfeld ermöglicht die Stern- oder Dreieckschaltung mit einer symmetrischen/unsymmetrischen Last.
- Ströme in den einzelnen Zweigen werden mit Hilfe von I/U-Wandlern und dem Multimeter bzw. Oszilloskop gemessen.
- Abmessungen 250 x 150 x 42 mm. Gewicht 690g

Gerätemodule Drehstrommodul

Zubehör -

- Versorgungskabel (2 Stück)
- Satz der diskreten Komponenten (100 Ω : 3 Stk, 500 Ω : 3 Stk, 1 k Ω : 3 Stk, 2 k Ω : 3 Stk, Brücke: 7 Stk)

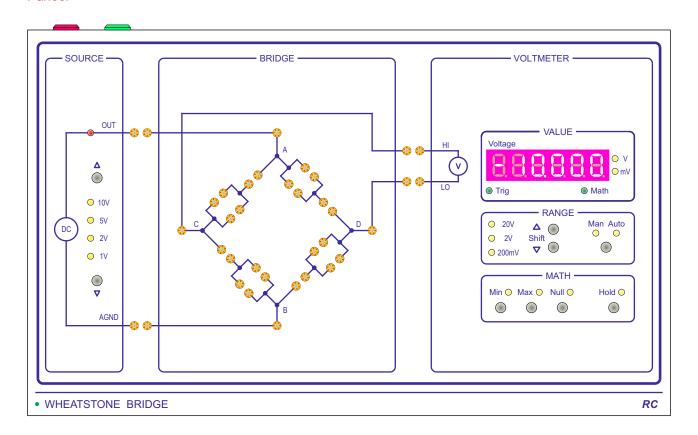
Parameter -

		Ber	eich	Genauigkeit
			max	
	Frequenz (Hz)	5	0	± 0,05 %
	Spannung U _{MAX} (V)	0,10	10,00	. 4.0.0/
	Spannung U _{RMS} (V)	0,07	7,07	± 1,0 %
Generator	Offset (V)	0		± 2,0 mV
	Phasenverschiebung (°)	0, -120, -240		± 1,0 °
	I _{OUT} (mA)	-	8,0	-
	$R_{OUT}(\Omega)$	< (0,1	-
	Konstante (V/mA)		1	± 1,0 %
Umformer I/U	Offset (V)	0		± 10,0 mV
	Last R _L (kΩ)	10	-	-

Temperaturbereich 15°C - 35°C. Aufwärmzeit 15 Minuten.

Bedienung ———

1. FUNKTIONSBLÖCKE


SOURCE	Dreiphasen-Spannungsquelle mit Frequenz 50 Hz
LOAD	Lastteil, ermöglicht die Stern- oder Dreieckschaltung

2. ANFANGSBEDINGUNGEN

Nach Anschluss des Moduls an die Spannungsversorgung stellt sich die Amplitude der Ausgangsspannung auf $U_{MAX} = 5,00 \text{ V}$ ein.

	Set	Ändert den Spannungswert in der gewählten Dezimalstelle um +/- 1
SOURCE	O Unit	Umschaltung der Anzeige zwischen Vmax und Vrms
SOURCE	V max	Anzeige des Scheitelwerts der generierten Spannung
	V rms	Anzeige der Effektivwerts (RMS) der generierten Spannung
		Überlastung, Strom I > 8 mA

1.7

Eigenschaften -

- Das Modul enthält drei Grundteile: Quelle (SOURCE), Wheatstone-Brücke (BRIDGE), und Voltmeter (VOLTMETER), die jede gegenseitige Verbindung zulassen
- Prozessorgesteuerte Quelle für vier präzise Referenzspannungen
- Potentialfreier Spannungsquellen-Ausgang
- Vernachlässigbarer Ausgangswiderstand der Quelle
- Ausgang durch elektronische Sicherung geschützt, Überlast wird durch die rote LED angezeigt
- Das Schaltungsfeld ermöglicht den Aufbau unterschiedlicher Brückentypen
- Abmessungen 250 x 150 x 42 mm. Gewicht 570g

Gerätemodule Wheatstone-Brücke

Zubehör -

- Versorgungskabel (2Stk)
- Elementesatz (1k Ω : 4 Stk, 9k Ω : 2 Stk, 19 k Ω : 2 Stk, 49k Ω : 2 Stk, 99 k Ω : 2 Stk, 10 Ω : 2 Stk, 20 Ω : 2 Stk, 50 Ω : 2 Stk, 100 Ω : 2 Stk, 200 Ω : 2 Stk, Brücke: 4 Stk)

Parameter —

		W	ert	Genauigkeit
		min	max	
	U _{1V} (V)		000	± 500μV
	U _{2V} (V)	2.0	000	± 750μV
Referenz-	U _{5V} (V)	5.0	000	± 1mV
quelle DC	U _{10V} (V)	10.000		± 2mV
	I _{OUT} (mA)	-50	50	± 2mA
	$R_{OUT}(\Omega)$	< 0,1		-
	Display	4,5 - s	telliger	-
		200 mV		± (0,05 % + 5 digit)
Voltmeter	Messbereiche	2 V		L (0.04.0/ L 2 digit)
		20	V	± (0,04 % + 3 digit)
	$R_{IN}(\Omega)$	10	М	-

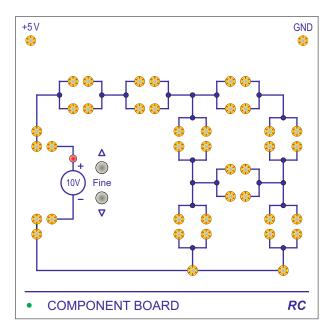
Temperaturbereich 15°C - 35°C. Aufwärmzeit 15 Minuten.

Bedienung -

1. FUNKTIONSBLÖCKE

SOURCE		Einstellung der Spannung der Quelle
BRIDGE		Anschluss der Brücke
	VALUE	Anzeige des Messwertes
VOLTMETER RANGE		Einstellung des Bereichs
	MATH	Mathematische Funktionen und Funktion Hold

2. ANFANGSBEDINGUNGEN


Nach Anschluss des Moduls zur Speisung sind diese Anfangsbedingungen eingestellt:

SOURCE	1V	RANGE	Auto
--------	----	-------	------

Gerätemodule Wheatstone-Brücke

Bedienung ————

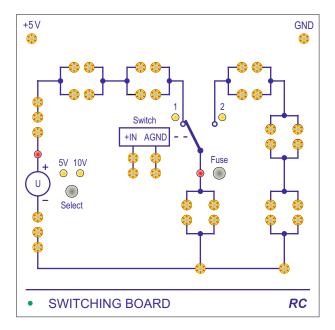
	△ ○ ○	Erhöht oder verringert den Spannungswert				
SOURCE	10V5V2V1V	Anzeige der eingestellten Spannung				
		Überschrittener Versorgungsstrom >50 mA				
VOLTMETER	• V	- Anzeige der gewählten Einheit				
VOLTMETER VALUE	• mV	Anzeige der gewaniten Einneit				
VALUE	• Trig	Blinkt im Abtastzeitpunkt				
	• 20V					
	• 2V	Anzeige des gewählten Messbereichs				
VOLTMETER	• 200mV					
RANGE	o Shift v Shi	Umschaltung des Messbereichs				
	Man Auto O	Wechselt zwischen manueller und automatischer Auswahl des Bereichs				
	o Min	Anzeige des minimalen Messwertes				
VOLTMETER	o Max	Anzeige des maximalen Messwertes				
MATH	o Null	Wahl des Nullwertes. Die Anzeige bezieht sich auf diesen Wert				
	O Hold	Friert den aktuellen Wert auf dem Display ein				

Eigenschaften —

- Universelles Schaltungsfeld für Gleichstromund Wechselstromkreise
- Die Verteilung der Leitungen und Buchsen ermöglichen die parallele und serielle Kombination der Bauelemente
- Referenzquelle 10V DC mit potentialfreiem Ausgang
- Feinstellung der Spannung in Schritten von 0,4 mV
- Ausgangswiderstand der Quelle R_{OUT} < 100mΩ (ideale Quelle)
- Ausgang der Quelle ist mit der elektronischen Sicherung gegen Überlastung geschützt
- Abmessungen 100 x 100 x 42 mm. Gewicht 195g

Parameter -

		Ber	eich	Genauigkeit
		min	max	
U _{NENN} (V)		10,	000	± 2 mV
Referenz-	Spannungsänderungbereich / mV	-12,5	+12,5	10%
quelle	Schritt (mV)	0	,4	10%
10V DC	I _{MAX} (mA)	2	22	± 5%
	R_{OUT}/Ω	<	0,1	-


Temperaturbereich 15°C - 35°C. Aufwärmzeit 15 Minuten.

Bedienung -

1. ANFANGSBEDINGUNGEN

Nach Anschluss des Moduls an die Spannungsversorgung ist die Ausgangsspannung der Quelle 10V auf 10,000 V eingestellt.

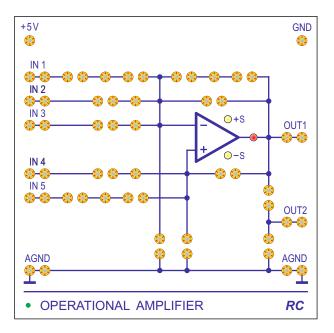
Quelle 10V	Fine	Ändert die Spannung der Quelle um +/- 1 Schritt, d.h. um 0,4 mV
	•	Überlastung, Strom I > 22 mA

Eigenschaften -

- Universelles Schaltungsfeld mit Schalter
- Geeignet für das Messen von Schaltvorgängen mit Speicherelementen (L, C) und Widerständen R
- Die Verteilung der Leitungen und Buchsen ermöglichen die parallele und serielle Kombination der Bauelemente
- Referenzquelle 5V, 10V DC mit potentialfreiem Ausgang
- Ausgangswiderstand der Quelle R_{OUT} < 100mΩ
 (Die Quelle verhält sich als eine ideale
 Spannungsquelle). Ausgang der Quelle ist mit der
 elektronischen Sicherung gegen Überlastung
 geschützt
- Abmessungen 100 x 100 x 42 mm. Gewicht 195g

Parameter -

		Ber	eich	Genauigkeit
		min	max	
	U _{10V} (V)	10	,0	± 2 mV
Referenz-	U _{5V} (V)	5	,0	± 1 mV
quelle 5V, 10V DC	I _{MAX} (mA)	2	2	± 5%
	$R_{OUT}(\Omega)$	< 0,1		-
	Eingangspegel	TTL		-
	$R_{ON}(\Omega)$	< 2,0		-
Umschalt- kontakt	R_{OFF} (M Ω)	> 2	.00	-
	I _{OUT} (mA)	± 250		± 5%
	t _{SW} (μs)	< '	1,0	-


Temperaturbereich 15°C - 35°C. Aufwärmzeit 15 Minuten.

Bedienung -

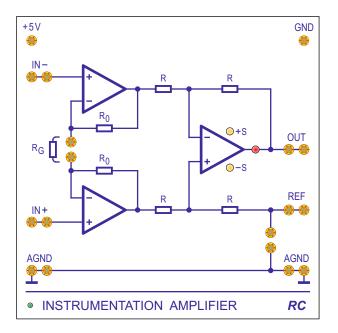
1. ANFANGSBEDINGUNGEN

Nach Anschluss des Moduls an die Versorgung ist die Ausgangsspannung der Quelle auf 5V eingestellt und der Schalter ist in der "Position" 1.

Quelle 5V, 10V	5V 10V O Select	Wählt den Wert der Ausgangsspannung der Quelle
		LED leuchtet, wenn die Quelle mit Strom > 22 mA überlastet ist
Umschal-	1 200	Anzeige der Position des geschlossenen Kontaktes des Umschalters
ter	-•-	LED leuchtet - Der Stromkreis wird geöffnet bei Überlastung mit Strom > 250 mA
	O Fuse	Rücksetzen der Sicherung gegen Überlastung des Umschalters

Eigenschaften -

- Schneller Operationsverstärker und Schaltungsfeld
- Das Modul ermöglicht den übersichtlichen Aufbau der Grundschaltungen des Operationsverstärkers
- Operationsverstärker (Typ OPA 132)
- Ausgangsspannung ± 11 V (Lastwiderstand R_i = 500 Ω)
- Ausgangsstrom ± 22 mA
- FET Eingänge, niedriger Eingangsstrom
- Niedriger Eingangspannungsoffset und CMRR > 100 dB
- Verstärkung der offenen Schleife 130 dB
- Abmessungen 100 x 100 x 42 mm. Gewicht 205g


Parameter -

	Wert		Genauigkeit
	min	max	
Sättigungsspannung (V)	-11,0	11,0	± 5 %
I _{OUT} (mA)	-22	22	± 5 %
Eingangsspannung Offset (μV)	< 50		-
Eingangsstrom (pA)	< 50		-
Verstärkung der offenen Schleife (dB)	130		-
CMRR (dB)	>100		-

Temperaturbereich 15°C - 35°C. Aufwärmzeit 15 Minuten.

Steuerungselemente

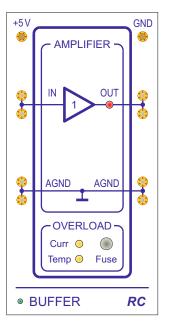
OPAM	• +S • -S	Positive, negative Sättigung des Ausganges
Ausgang		LED leuchtet - Stromüberlastung (Strom > 22 mA)

Eigenschaften -

- Modul des Instrumentenverstärkers
- Bietet einen Eingang für eine externe Referenzspannung
- Instrumentenverstärker INA 121
- Ausgangsspannung ± 11 V (Belastung $R_L = 2k\Omega$)
- Ausgangsstrom ± 6 mA
- Verstärkung A = 1+ $\frac{2 R_0}{R_G}$ = 1+ $\frac{50 k \Omega}{R_G k \Omega}$
- FET Eingänge, niedriger Eingangsstrom
- Niedriger Eingangsspannungoffset und CMRR > 80 dB
- Abmessungen 100 x 100 x 42 mm. Gewicht 200g

Parameter -

	Wert		Genauigkeit	
	min	max		
Saturationsspannung (V)	-11,0	11,0	± 5	5 %
I _{OUT} (mA)	-6	6	± 5	5 %
Eingangsspannungoffset (mV)	<1		-	
Ausgangsspannungoffset (mV)	< 1		-	
Eingangsstrom (pA)	< 50			-
$R_0(k\Omega)$	2	5	± 0,	1 %
R (kΩ)	4	0	± 0,	1 %
Verstärkung (-)	1	10 000	± 0,1 %	± 0,5 %
CMRR (dB)	80	106		-


Temperaturbereich 15°C - 35°C. Aufwärmzeit 15 Minuten.

Steuerungselemente -

Ausgang	• +S • -S	Positive, negative Sättigung des Ausganges
OPV	-	LED leuchtet - Stromüberlastung (Ausgangsstrom > 6 mA)

2.5 Buffer BUFF

Paneel -

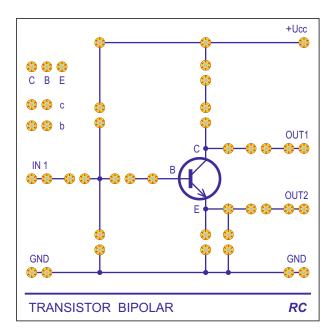
Eigenschaften -

- Modul des Leistungsoperationsverstärkers mit Verstärkung A = 1
- Passend zur Speisung des Transformators und zur Messung der U-I Kennlinien einiger Bauteilen usw.
- Ausgangswiderstand R_{OUT} < 0,1 Ω
- Modulausgangsstrom bis 220 mA. Anzeige der Überlastung und Abkopplung des Ausgangs
- Modul geschützt gegen thermische Überlastung mit Anzeige und Abkopplung des Ausgangs
- Abmessungen 50 x 100 x 42 mm. Gewicht 160g

Parameter -

	Bereich		Genauigkeit
	min	max	
Verstärkung (-)	1		± 0,5 %
Offset (mV)	± 10		-
Frequenzbereich (kHz)	0	10	-
Ausgangsspannung (V)	- 12	12	-
$R_{IN}(\Omega)$	100 k		± 1 %
$R_{OUT}(\Omega)$	< 0,1		-
I _{OUT} (mA)	- 220 220		± 5 %

Temperaturbereich 15°C - 35°C. Aufwärmzeit 15 Minuten.


Steuerungselemente -

AMPLIFIER		LED leuchtet, Ausgang entkoppelt durch Überlastung
	• Curr	Stromüberlastung, Ausgangsstrom > ±220 mA
OVERLOAD	Temp	Temperaturüberlastung des Verstärkers
	O Fuse	Restart der Überlastungssicherung

TRBN

Paneel -

2.6

Eigenschaften -

- Schaltungsfeld für Bipolartransistor NPN
- Das Modul ermöglicht den übersichtlichen Aufbau der Grundschaltungen des Transistors
- Typ BC 546 oder ähnlicher
- Transistor wird als ein selbständiger Baustein auf einem 3pin Stecker eingefügt. Einfacher Wechsel des Transistortyps
- Transistorschutz (Möglichkeit der Überbrückung): Übergang BE: R_B = 200 Ω Überbrückung b Kollektor: R_C = 120 Ω Überbrückung c
- Die Überbrückung des Schutzwiderstandes benutzt man z.B. bei Transistor Kennlinienmessungen
- Abmessungen 100 x 100 x 42 mm. Gewicht 170g

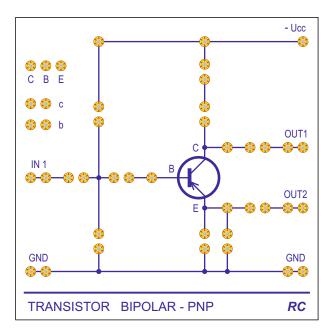
Parameter -

1. Modul

		Wert		
		min	max	
Schutz R _B (Ω)	(1)	200		
Schutz $R_{C}(\Omega)$ (2)		120		
Spannung +U _{CC} (V)		-	15	

Schutz $R_{B.....}$ Überbrückung der Buchsen b schaltet den Schutz aus Schutz $R_{C.....}$ Überbrückung der Buchsen c schaltet den Schutz aus

2. Transistor BC 546


	Wert	
	min	max
Verstärkungsfaktor β (-)	120	220
I _C (mA)	-	100
Schwellenspannung (V)	< (0,6

Verstärkungsfaktor β Für U_{CE} = 5 V, I_{C} = 2 mA. Schwellenspannung...... Für I_{C} = 100 mA, I_{B} = 5 mA.

TRBP

Paneel -

2.7

Eigenschaften -

- Schaltungsfeld für Bipolartransistor PNP
- Das Modul ermöglicht den übersichtlichen Aufbau der Grundschaltungen des Transistors
- Typ BC 556 oder ähnlicher
- Transistor wird als ein selbständiger Baustein auf einem 3pin Stecker eingefügt. Einfacher Wechsel des Transistortyps
- Transistorschutz (Möglichkeit der Überbrückung): Übergang BE: R_B = 200 Ω Überbrückung b Kollektor: R_C = 120 Ω Überbrückung c
- Die Überbrückung des Schutzwiderstandes benutzt man z.B. bei Transistor Kennlinienmessungen
- Abmessungen 100 x 100 x 42 mm. Gewicht 170g

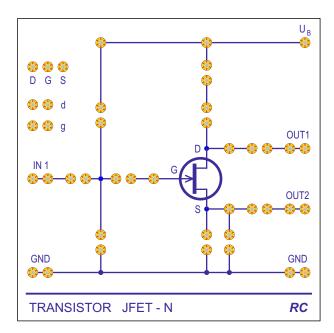
Parameter -

1. Modul

		Wert		
		min	max	
Schutz $R_B(\Omega)$	(1)	20	00	
Schutz $R_{C}(\Omega)$ (2)		120		
Spannung -U _{CC} (V)		-	-15	

Schutz $R_{B.....}$ Überbrückung der Buchsen b schaltet den Schutz aus Schutz $R_{C.....}$ Überbrückung der Buchsen c schaltet den Schutz aus

2. Transistor BC 556


	Wert	
	min	max
Verstärkungsfaktor β (-)	120	220
I _C (mA)	-	100
Schwellenspannung (V)	< (),6

Verstärkungsfaktor β Für U_{CE} = - 5 V, I_{C} = - 2 mA. Schwellenspannung...... Für I_{C} = - 100 mA, I_{B} = - 5 mA.

TRJN

Paneel -

2.8

Eigenschaften -

- Schaltungsfeld für Unipolartransistor JFET N
- Das Modul ermöglicht den übersichtlichen Aufbau der Grundschaltungen des Transistors
- Typ BF 245 oder ähnlicher
- Transistor wird als ein selbständiger Baustein auf einem 3pin Stecker eingefügt. Einfacher Wechsel des Transistortyps
- Transistorschutz (Möglichkeit der Überbrückung): Gate: R_G = 1 k Ω Überbrückung g Kanal: R_D = 120 Ω Überbrückung d
- Die Überbrückung des Schutzwiderstandes benutzt man z.B. bei Transistor Kennlinienmessungen
- Abmessungen 100 x 100 x 42 mm. Gewicht 170g

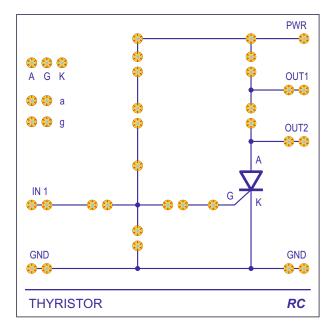
Parameter -

1. Modul

	Wert	
	min	max
Schutz $R_G(\Omega)$	1k	
Schutz R_D (Ω)	120	
Spannung +U _B (V)	- 15	

Schutz $R_{G.....}$ Überbrückung der Buchsen g schaltet den Schutz aus Schutz $R_{D.....}$ Überbrückung der Buchsen d schaltet den Schutz aus

2. Transistor BF 245


	Wert	
	min	max
y _{21s} (mS)	3,0	6,5
I _{DS} (mA)	-	25
Schwellenspannung U _{GS(off)} (V)	- 8,0	- 0,5

 y_{21s} Für U_{DS} = 15 V, U_{GS} = 0 V, f = 1 kHz.

 $U_{GS(off)}$ Für U_{DS} = 15 V, I_D = 10 nA.

2.9 Thyristor THYR

Paneel -

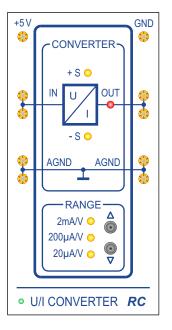
Eigenschaften -

- Schaltfeld für Thyristor
- Das Modul ermöglicht den übersichtlichen Aufbau der Grundschaltungen des Thyristors
- Bestimmt für den Typ 2N5060 oder einen ähnlichen
- Der Thyristor wird als ein selbständiger Baustein auf dem 3pin Stecker eingefügt. Einfacher Wechsel des Typs
- Der Schutz des Thyristors (mit Möglichkeit der Überbrückung):

Anode: $R_A = 20 \Omega$ Überbrückung a Gate: $R_G = 1 k\Omega$ Überbrückung g

- Überbrückung des Schutzwiderstandes nutzt man z.B. bei der Messung der U-I Kennlinien des Thyristors
- Abmessungen 100 x 100 x 42 mm. Gewicht 170g

Parameter -


1. Modul

	Wert	
	min	max
Schutz R _A (Ω)	20	
Schutz $R_G^-(k\Omega)$	1	
Spannung +U _{PWR} (V)	-	15

Schutz R_A Überbrückung der Buchsen a schaltet den Schutz aus Schutz R_G Überbrückung der Buchsen g schaltet den Schutz aus

2. Thyristor 2N5060

	Wert	
	min	max
Anodenstrom (mA)	-	800
Haltestrom (mA)	5	
Schaltstrom (mA)	0,2	
Schaltspannung U _{GK} (V)	0,8	
Durchbruchspannung U _{AK} (V)	30	

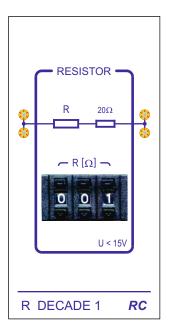
Eigenschaften -

- Präziser Spannungs-zu-Strom Umwandler für drei Bereiche
- Vorteilhaft für die Messung der U/I Kennlinien von Komponenten
- Eingangswiderstand R_{IN} > 10 $G\Omega$
- Ausgangsstrom im Bereich 0.2µA bis 22 mA
- Überwachung der Bereichsgrenzen von Ein- und Ausgang
- Abmessungen 50 x 100 x 42 mm. Gewicht 160g

Parameter -

	Wert		Genauigkeit
	min	max	
Umwandlung (μΑ/V)	20, 200, 2000		± 1 %
Offset (V)	0		± 10 mV
Frequenzbereich (Hz)	0	10 k	-
Ausgangsspannung (V)	- 11	11	± 5 %
$R_{IN}(\Omega)$	>10G		-
$R_{OUT}(\Omega)$	100		± 1 %
I _{OUT} (mA)	- 22	22	± 5 %

Temperaturbereich 15°C - 35°C. Aufwärmzeit 15 Minuten.


Steuerungselemente -

		Der Strom ist ausserhalb des Bereichs
OVERLOAD	• +S	Überschreitung der positiven Stromgrenze
	• -S	Überschreitung der negativen Stromgrenze
RANGE	∆ O ∇ O	Umschaltung der Wandlerkonstante 20-200-2000 µA/V

R1DE

Paneel -

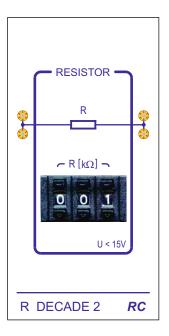
3.1

Eigenschaften -

- Präzise Widerstandsdekade mit Wahl des Wertes durch Schalter
- Bereich: 20 Ω 1019 Ω , Schritt: 1 Ω
 - Schutz mit akustischem Alarm:

 beim Überschreiten der Spannung 15 V

 beim Überschreiten des Stromes 250 mA
- Genauigkeit (Temperatur 15°C 35°C):

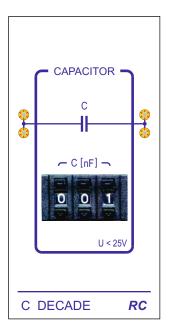

R < 50 Ω 1,0 % R < 100 Ω 0,5 % R ≥ 100 Ω 0,1 %

- Temperaturkoeffizient 25 ppm/°C
- Abmessungen 50 x 100 x 42 mm. Gewicht 120g

Parameter -

	Wert		Genauigkeit
	min	max	
Bereich R (Ω)	20	1019	± 1,0 / 0,5 / 0,1 %
Schritt (Ω)	1		-
Temperaturkoeffizient (ppm/°C)	25		-
U _{MAX} (V)	15		-
I _{MAX} (mA)	250 mA		-

3.2



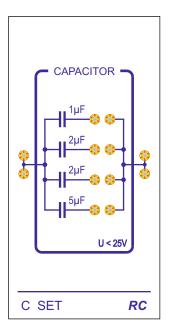
Eigenschaften —

- Präzise Widerstandsdekade mit Wahl des Wertes durch Schalter
- Bereich: 1 kΩ 999 kΩ, Schritt: 1kΩ
- Schutz mit akustischem Alarm:
 beim Überschreiten der Spannung 15 V
 beim Überschreiten des Stromes 250 mA
- Genauigkeit: 0,1 % (Temperatur 15°C - 35°C)
- Temperaturkoeffizient 25 ppm/°C
- Abmessungen 50 x 100 x 42 mm. Gewicht 120g

Parameter ———

	Wert		Genauigkeit
	min	max	
Bereich R (Ω)	1 k	999 k	± 0,1 %
Schritt (Ω)	1 k		-
Temperaturkoeffizient (ppm/°C)	25		-
U _{MAX} (V)	15		-
I _{MAX} (mA)	250 mA		-

Eigenschaften -


- Präzise Kondensatordekade mit Wahl des Wertes durch Schalter
- Bereich: 1 nF 999 nF, Schritt: 1nF
- Hochwertige Polypropylenkondensatoren
- Genauigkeit: 0,8 %
 (Temperatur 15°C 35°C)
- Temperaturkoeffizient < 200 ppm/°C
- Maximale Spannung 25 V
- Abmessungen 50 x 100 x 42 mm. Gewicht 120g

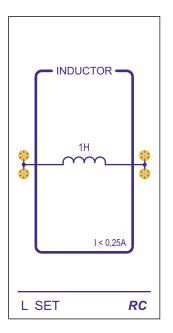
Parameter -

	Wert		Genauigkeit
	min	max	
Bereich C (nF)	1	999	± 0,8 %
Schritt (nF)	1		-
Temperaturkoeffizient (ppm/°C)	< 200		-
U _{MAX} (V)	25		-

3.4

Paneel -

Eigenschaften -


- Kondensatorset mit Werten 1 μ F, 2 μ F (2x), 5 μ F mit der Möglichkeit der Parallelschaltung zu den Ausgangsklammern
- Hochwertige Propylenkondensatoren
- Genauigkeit: 0,8 %
 (Temperatur 15°C 35°C)
- Temperaturkoeffizient < 200 ppm/°C
- Maximale Spannung 25 V
- Abmessungen 50 x 100 x 42 mm. Gewicht 120g

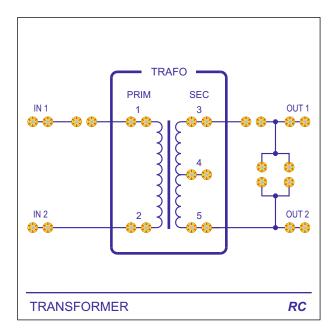
Parameter -

	Wert		Genauigkeit
	min	max	
Bereich C (μF)	1	10	-
Schritt C (μF)	1		-
	1,0		± 0,8 %
Kapazität der einzelnen Kondensatoren (μF)	2,0		± 0,8 %
rtondensatoren (μι)	5,0		± 0,8 %
Temperaturkoeffizient (ppm/°C)	< 200		-
U _{MAX} (V)	25		-

Spule LSET

Paneel -

Eigenschaften -

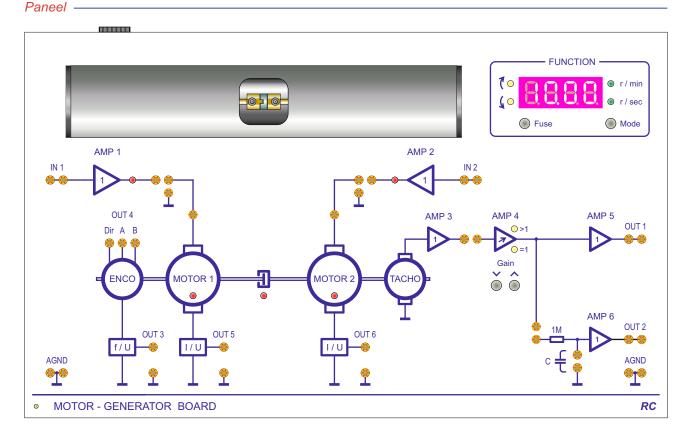

- Modul der präzisen Induktivität
- Wert: 1 H
- Genauigkeit: 0,8 %
 (10 Hz 10 kHz, 15°C 35°C)
- Wicklungswiderstand R_L ~ 35 Ω
- Ferritkern
- Schutz gegen Gleichstromüberlastung mit akustischem Alarm
- Maximaler Strom 0,25 A
- Abmessungen 50 x 100 x 42 mm. Gewicht 215g

Parameter -

	Wert		Genauigkeit
	min	max	
Induktivität (H)	1		± 0,8 %
Wicklungswiderstand (Ω)	35		-
I _{MAX} (A)	0,25		-

Temperaturbereich 15°C - 35°C.

Induktivität..... Frequenzbereich 10 Hz - 10 kHz.


Eigenschaften -

- Modul des Transformators mit Schutzsystem
- Verhältnis der Windungszahlen: 1:1
- Anzapfung bei der Hälfte der Sekundärwicklung
- Eigenschaften des Transformators Primärwindungszahl 170 Sekundärwindungszahl 2x 85 Kern Bleche M111-35N Wicklungswidersand $R_{12} = R_{35} = 5 \Omega$
- Schutz gegen Strom- und Spannungsüberlastung
- Maximaler Strom 0,25 A, maximale Spannung 10 V
- Abmessungen 100 x 100 x 42 mm. Gewicht 170g

Parameter -

		V	/ert	Genauigkeit
		min	max	
	Windungszahl	1	70	-
Drimäranula	R ₁₂ (Ω)		5	± 20 %
Primärspule	U _{MAX} (V)		10	-
	I _{MAX} (A)	0	,25	-
	Windungszahl 3-4	1 8	35	-
	Windungszahl 4-8	5 8	35	-
Columbia	R ₃₄ (Ω)	2	2,5	± 20 %
Sekundärspule	R ₄₅ (Ω)	2	2,5	± 20 %
	U _{MAX} (V) 10		-	
	I _{MAX} (A)	0	,25	-
	Kernmaterial	Bleche I	M111-35N	
Kern	Permeabilität (mH/m)	-	5,0	-
ĸem	Querschnitt (mm²)	1	00	-
	Mittlere Feldlinie (mm)	(65	-

4.1

Eigenschaften -

- Regelstrecke mit zwei Gleichstrommotoren
- Eisenlose High-Tech Motore, die über eine niedrige Reibung und geringe Anlaufspannung sowie einen hohen Wirkungsgrad und gute thermische Eigenschaften verfügen
- Eine sehr genaue OLDHAM Kupplung gewährleistet die perfekte Verbindung der beiden Motore
- Motor M1 ist mit dem Inkrementalgeber ENCO verbunden, dessen Ausgang auch auf einen Frequenz/Spannung Umformer führt. Motor M2 ist mit dem linearen Tachodynamo TACHO mit sehr kleinem Massenträgheitsmoment verbunden
- Die Auswertung des Tachodynamos kann auf zwei Arten erfolgen:
 - a) über Trennungsverstärker AMP 3
 - b) über ein Filter mit variabler Verstärkung AMP 4, welches die Normierung von Kennlinien ermöglicht
- Beide Motoren werden durch genaue Operationsverstärker AMP 1 und AMP 2 angesteuert, die gegen Überlastung gesichert sind
- Die unabhängige Steuerung des Motors M2 ermöglicht die beliebige Belastung des Motors M1
- Drehzahlblock (FUNCTION) zeigt die Motordrehzahl auf zwei Arten U/min oder U/sec an. LED-Dioden melden die Drehrichtung. Das Display zeigt auch die Fehlermeldungen (Siehe Tabelle Fehlerdiagnostik) an
- Neben einer breiten Anwendung in der Regelungstechnik ermöglicht das Modul auch die Messung der Kennlinien der kleinen Gleichstrommotoren
- Abmessungen 250 x 150 x 42 mm. Gewicht 880g

Zubehör —

• Zwei lange Messsonden (2Stk)

Parameter ——

		V	Vert	Genauigkeit
		min	max	
	Тур	DC e	isenlos	
	Nennleistung (W)	4	,05	-
	Spannung (V)	0,2	12,0	-
Motor 1	Drehzahl (r/min)	-	7 800	-
	I _D (A)	-	0,52	-
	Durchmesser (mm)	2	2,0	± 0,1
	Gewicht (g)	4	46	-
	Тур	DC e	isenlos	
	Nennleistung (W)	3	,69	-
	Spannung (V)	0,2	12,0	-
Motor 2	Drehzahl (r/min)	-	8 200	-
	I _D (A)	-	0,43	-
	Durchmesser (mm)	22,0		± 0,1
	Gewicht (g)	61		-
	Leistung (W)	-	3,5	-
Motor- Generator-	Drehzahl (r/min)	-	5 000	-
Regelstrecke	Zeitkonstante (ms)	16		± 2
<u> </u>	Anlaufspannung (V)	0,5		-
Drehzahl-	Konstante (n/r)	512		-
sensor	Digitale Ausgänge	A, B, DIR	(Alles TTL)	-
Umwandler f/U	Konstante	1 V/10	000r/min	± 2,0 %
Offiwaridier 1/O	$R_{OUT}(\Omega)$	<	0,1	-
Tachadunama	Konstante	1 V/10	000r/min	± 2,0 %
Tachodynamo	$R_{OUT}(\Omega)$	<	0,1 (3)	-
.,	Verstärkung (-)	1,00	2,12	± 1 %
Verstärker AMP 4	Schritt (-)	0	,01	± 20 %
	R _{OUT} (Ω)	<	0,1	-
Umwandler I/U	Konstante	5 m	V/mA	± 2,0 %
Uniwandle I/U	R _{OUT} (Ω)	<	0,1	-

Temperaturbereich 15°C - 35°C. Aufwärmzeit 15 Minuten

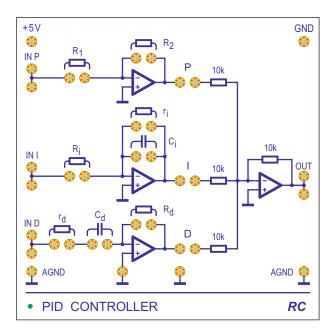
Tachodynamo $\mathsf{R}_\mathsf{OUT}......$ Ausgangswiderstand des AMP3 Verstärkers

1. FUNKTIONSBAUSTEINE

FUNCTION	Anzeige der Geschwindigkeit, Wiederanlaufsperre	
AMP 1, 2	Treiber des ersten bzw. zweiten Motors	
MOTOR 1, 2	Eisenlose DC Motoren	
I/U	Wandler des Stromes in die Wicklungsspannung	
ENCO	Geschwindigkeitssensor	
f/U	Der Frequenz/Spannungs-Wandler der Pulse des Geschwindigkeitssensors	
TACHO	Tachodynamo mit kleinem Trägheitsmoment	
AMP 3	Signalfolger von Ausgang des Tachodynamo	
AMP 4	Verstärker für Normierung des Einschwingverhalten	
AMP 5	Trennverstärker des Ausgangs AMP 4	
AMP 6	Ein Filter ermöglicht die Bearbeitung des Signals des Tachodynamos	

2. ANFANGSBEDINGUNGEN

Nach dem Anschluss des Moduls an die Speisung wird die Drehzahl in U/min angezeigt und die Verstärkung von AMP 4 ist auf 1,65 eingestellt.


	(•	Anzeige der Drehrichtung der Regelstrecke
	(•	7 Tizzoigo doi Bronnontang doi reogniculostio
FUNCTION	• r / min	Anzeige der Einheit der Deretellung
FUNCTION	• r/sec	Anzeige der Einheit der Darstellung
	O Mode	Umschaltung der Einheit und des Displays
	O Fuse	Restart aller Sicherungen in Modul
AMP 1, 2		Temperaturüberlastung des Verstärkers, Ausgang ausgeschaltet
MOTOR	• MOTOR	Motor ausgeschaltet durch Spannung- oder Leistungsüberlastung
1, 2	•	Motor ausgeschaltet durch Überschritt der Drehzahl
	o >1	Verstärkung AMP 4 ist grösser als 1
AMP 4	o =1	Verstärkung AMP 4 ist gleich 1
	Gain	Schrittweise Veränderung der Verstärkung von AMP 4

Bedienung —

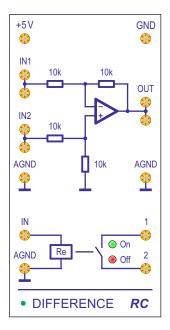
4. FEHLERDIAGNOSTIK

E-01	MOTOR 1	Belastung > 3,5 W
E-02	MOTOR 1	Spannung auf dem Motor > 14 V
E-03	AMP 1	Temperaturüberlastung
E-04	Kupplung	Drehzahl > 4000 r/min
E-05	MOTOR 2	Belastung > 3,5 W
E-06	MOTOR 2	Spannung auf dem Motor > 14 V
E-07	AMP 2	Temperaturüberlastung
E-08	Speisung	Positive Speisungsspannung < 14 V
E-09	Speisung	Negative Speisungsspannung > -14 V

4.2

Eigenschaften -

- Regelungsglieder P, I und D
- Teil des Regelungsmodulesatzes
- Dreikanaliger Addierer, jeweils mit Verstärkung 1
- Möglichkeit der parallelen und Kaskaden- Anordnung der Glieder
- Unabhängige Einstellung von Parametern der einzelnen Gliedern (Verstärkung und Zeitkonstante)
- Max/min Werte der Ausgangsspannung ± 12 V
- Ausgänge der Glieder und des Addierers sind kurzschlussfest
- Abmessungen 100 x 100 x 42 mm. Gewicht 175g


Parameter -

		W	ert	Genauigkeit
		min	max	
	Offset (mV)	0		± 1,0
P, I, D Glieder	I _{OUT} (mA)	-22	22	-
	$R_{OUT}(\Omega)$	< 0,1		-
	Offset (mV)	0		± 1,0
	Verstärkung (-)	•	1	± 0,2 %
Addierer	U _{OUT} (V)	-12,0	12,0	-
	I _{OUT} (mA)	-22	22	-
	$R_{OUT}(\Omega)$	< (0,1	-

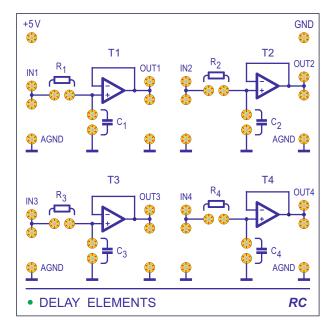
Temperaturbereich 15°C - 35°C. Aufwärmzeit 15 Minuten.

Paneel –

4.3

Eigenschaften -

- Differenzverstärker für Gewinnung der Regelabweichung
- Teil des Regelungsmodulesatzes
- Getrennte Erdung des Verstärkers
- Ausgangspannungsbereich grösser als ± 13 V
- Der Ausgang des Verstärkers ist kurzschlussfest
- Relais mit dem Schaltkontakt, benutzt z.B. für Einstellung der Anfangsbedingungen des I-Gliedes im PID Regler
- TTL Eingang des Relais
- Der Ausgang des Relais ist geschützt gegen Strombelastung
- Abmessungen 50 x 100 x 42 mm. Gewicht 110g


Parameter -

		W	ert	Genauigkeit
		min	max	
	Offset (mV)	()	± 1,0
	Vorotörkung ()		1	± 0,2 %
Differenzalied	Verstärkung (-)	-1		± 0,2 %
Differenzglied	U _{OUT} (V)	-13	13	-
	I _{OUT} (mA)	-22	22	-
	$R_{OUT}(\Omega)$	< 0,1		-
	U _{IN} (V)	TTL		
Relais	I _{MAX} (A)	0,5		-
	$R_{OUT}(\Omega)$	< 5		-

Temperaturbereich 15°C - 35°C. Aufwärmzeit 15 Minuten.

Steuerungselemente -

Relais	• On	LED leuchtet - Kontakt ist geschlossen
Neiais	• Off	LED leuchtet - Kontakt ist geöffnet

Eigenschaften -

- Vier unabhängige 1. Ordnung Glieder
- Teil des Regelungsmodulesatzes
- Die einzelnen Glieder sind durch Verstärker entkoppelt um eine gegenseitigen Beeinflussung zu verhindern
- Möglichkeit der Parallel- und Serienschaltung von einzelnen Gliedern
- Unabhängige Einstellung der Zeitkonstante der einzelnen Glieder
- Max/Min-Werte der Ausgangsspannung ± 13 V
- Ausgänge der Glieder sind kurzschlussfest
- Abmessungen 100 x 100 x 42 mm. Gewicht 175g

Parameter -


	Wert		Genauigkeit
	min	max	
Offset (mV)	0		± 1,0
U _{OUT} (V)	-13	13	-
I _{OUT} (mA)	-22	22	-
$R_{OUT}(\Omega)$	< 0,1		-

Temperaturbereich 15°C - 35°C. Aufwärmzeit 15 Minuten.

TIBA

Paneel -

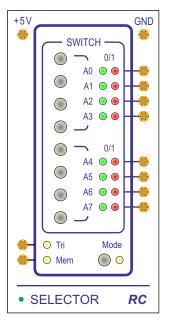
5.1

Eigenschaften -

- Kristall-Oszillator und Frequenzteiler
- TTL Pegel
- Frequenzbereich 1 Hz 100 kHz
 6 Teiler Ausgänge in logarithmischer Staffelung
- Funktion Start (Taste oder TTL Eingang RUN)
- Frequenzteiler als ein selbstständiger Teil des Moduls
- Teilverhältnisse (5 separate Ausgänge): 2, 5, 10, 20, 50
- Technologie HCT Fan-Out > 10
- Abmessungen 50 x 100 x 42 mm. Gewicht 110g

Bedienung -

1. FUNKTIONSBAUSTEINE


OSCILLATOR	Oszillator mit 6 Ausgänge
DIVIDER	Teiler mit 5 ständigen Teilverhältnisse

2. ANFANGSBEDINGUNGEN

Nach dem Anschluss des Moduls an die Versorgung ist der Oszillator gestoppt, die Ausgänge stehen auf logisch-Null.

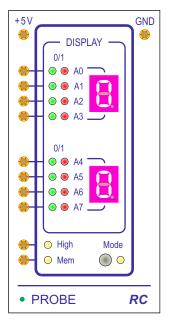
OSCILLATOR	0	Run	Startet und stoppt den Oszillator
OSCILLATOR	0	Kuli	Anzeige des Laufes des Oszillators
DIVIDER	0	Clear	Restart des Zählers in Teiler
OIVIDER Clear		Clear	Anzeige, dass der Restart des Teilers nötig ist

5.2

Eigenschaften -

- Achtkanalselektor der logischen Pegel TTL
- Geschützte Ausgänge
- Tasterwahl der logischen Pegel mit Entprellung
- Anzeige der logischen Pegel durch LED
- Steuerung Schalt und Umschalt Mode
- Eingang Mem gleichzeitiges "Einfrieren" der logischen Pegel auf dem Selektorausgang mit der Möglichkeit neue logische Pegel einzustellen
- Eingang TRI Ausgänge in Tristate Möglichkeit der Schaltung zum µP Bus
- Technologie HCT Fan-Out > 10
- Abmessungen 50 x 100 x 42 mm. Gewicht 115g

Bedienung -


1. FUNKTIONSBLÖCKE

SWITCH	Tasten der Steuerung der Ausgänge mit Indikation des logischen Standes
HAUPTBLOCK	Steuerungseingänge, Umschaltung des Modus der Tasten

2. ANFANGSBEDINGUNGEN

Nach Anschluss des Moduls zur Speisung arbeiten die Tasten im Schaltungsmodus und Ausgänge stellen sich auf logische Null ein.

SWITCH	O/1		Umschaltet den Ausgangsstand - bei aktivem Schaltungsmodus nur für Zeit wenn die Taste gedrückt ist	
			"'	
	O Mode		Schaltung zwischen Schalt- und Umschalt-Mode	
HAUPTBLOCK	•	iviode	Schalt-Modus ist aktiv	
	• Tri		Ausgänge sind "Tristate" (hohe Impedanz)	
	•	Mem	Ausgänge halten ihre Zustände unabhängig von dem durch die Tasten gewählten Zustand. Gewählte Werte werden erst beim Übergang des Eingangs Mem in log. 0 oder in Tristate ausgegeben	

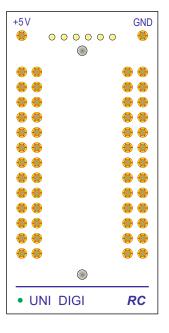
Eigenschaften -

- Achtkanalige logische Tristate Probe TTL
- LED leuchtet nicht: Tristate oder Eingang nicht eingeschaltet
- Anzeige der logischen Pegel binäre (grüne und rote LED) hexadezimales Siebensegmentdisplay
- Zwei Mode des Displays
 Tristate: wird nicht dargestellt
 Bistate: Tristate ist als log. 0 betrachtet
- Eingang High: Eingänge der Probe sind intern auf log. 1 gezogen
- Eingang Mem: ermöglicht Speicherung der momentanen Stände
- Technologie HCT Fan-Out > 10
- Abmessungen 50 x 100 x 42 mm. Gewicht 110g

Bedienung -

1. FUNKTIONSBLÖCKE

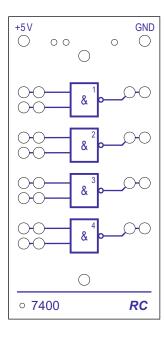
DISPLAY	Darstellung der gemessenen Stände im binären und hexadezimalen Kode
HAUPTBLOCK	Steuerungseingänge, Umschaltung des Displaymodus

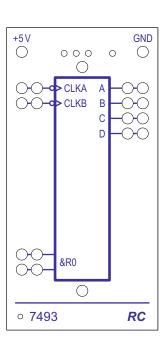

2. ANFANGSBEDINGUNGEN

Nach Anschluss des Moduls zur Speisung ist die Anzeige im Tristate Modus

DISPLAY	0/1		Anzeige des Zustands des zuständigen digitalen Eingangs. Bei Tristate leuchtet keine der LED's	
	IAUPTBLOCK O High O Mem		Umschaltung zwischen Tristate und Bistate Darstellung	
			Bistate Modus: Tristate wird als log. 0 betrachtet	
HAUPTBLOCK			Eingänge sind intern auf log. 1 gezogen	
			Die dargestellten Werte entsprechen dem Moment der letzten positiven Flanke des Eingangs Mem	

5.4

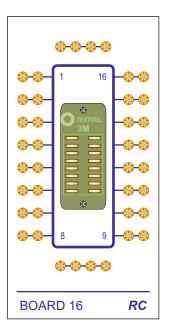

Paneel -



Eigenschaften -

- Universal Modul für Digitaltechnik 74er-Reihe
- Realisiert 24 verschiedene Schaltkreise der 74er-Reihe
- Wahl des Schaltkreises durch magnetischen Kode auf der Austauschkarte mit der jeweiligen schematischen Abbildung
- Geschützte Eingänge TTL (bis 13)
- Geschützte Ausgänge TTL (bis 13)
- Technologie HCT Fan-Out > 10
- Je 2 Buchsen f
 ür alle Ein- und Ausg
 änge
- Abmessungen 50 x 100 x 42 mm. Gewicht 125g

Karten

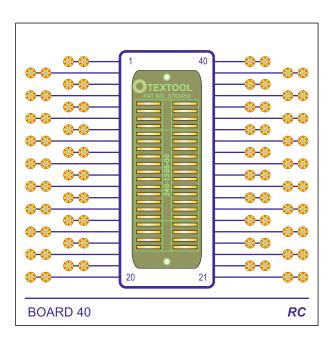


7400 7490 7402 7493 7404 74112 7408 74138 7410 74151 7420 74153 7430 74157 7432 74164 7474 74193 7475 74194 7485 74283

74373

7486

KARTEN DER KREISE



Eigenschaften —

- Modul mit 16pin Sockel ZIF der Firma 3M
- Hochqualitativer Sockel mit Nullkraft Mechanik und vergoldeten Kontakten
- Je 2 Buchsen f
 ür alle Pins
- Abmessungen 50 x 100 x 42 mm. Gewicht 125g

6.2 **Testmodul 1x40** BO40

Paneel -

Eigenschaften -

- Modul mit 40pin Sockel ZIF der Firma 3M
- Hochqualitativer Sockel mit Nullkraft Mechanik und vergoldeten Kontakten
- Je 2 Buchsen für alle Pins
- Abmessungen 100 x 100 x 42 mm. Gewicht 215g

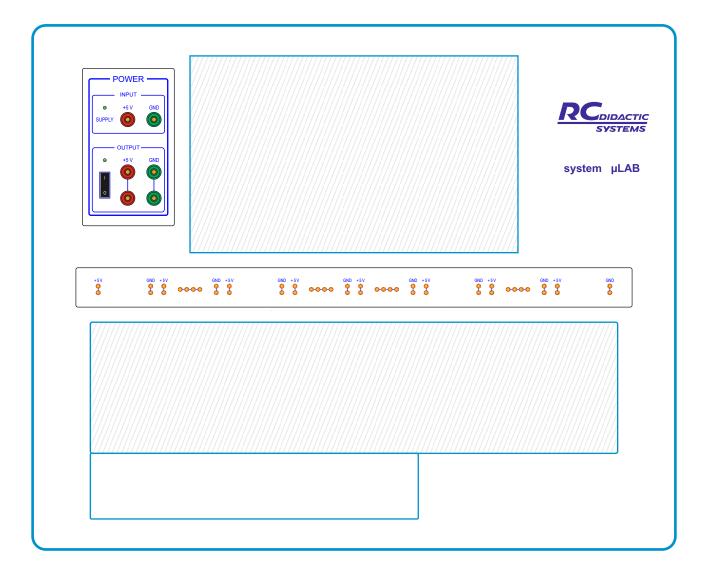
7.1

Eigenschaften -

- Das externe Netzgerät für die Speisespannung 5 V (4,0 A)
- Die Quelle erfüllt die Sicherheitsstandards En60950, IEC950, EN55022, EN61000-3-2 class A
- Zweiadriges Zuführungskabel mit Stecker nach der Norm IEC 320-C8
- Fixverdrahtetes Ausgangskabel, 40 cm lang, mit vergoldeten 2 mm Sicherheits Steckern
- Ausgangsseitige Sicherung gegen Kurzschluss und Überspannung mit automatischem Reset
- Abmessungen 110 x 50 x 20. Gewicht 155g

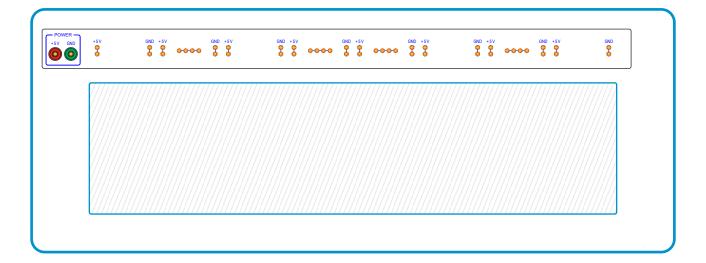
Parametern -

	We	erte	Genauigkeit
	min	max	
Spannung (V)	5,0		± 6 %
Strom (A)	0 4,0		-
Rauschen (%)	1		-
Wirkungsgrad (%)	73		-



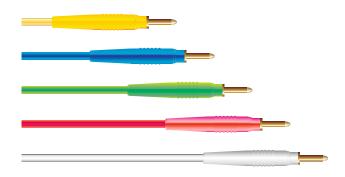
- Das externe Netzgerät für die Speisespannung 24 V (1,5 A)
- Die Quelle erfüllt die Sicherheitsstandards EN60950-1, EN55022, EN61000-3-2 class A
- Zweiadriges Zuführungskabel mit Stecker nach der Norm IEC 320-C8
- Fixverdrahtetes Ausgangskabel, 120 cm lang, mit vergoldeten Niederspannungs – Stecker (DC jack -Innendurchmesser 2,1 mm; Außendurchmesser 5,5 mm)
- Ausgangsseitige Sicherung gegen Kurzschluss und Überspannung mit automatischem Reset
- Abmessungen 110 x 50 x 20mm. Gewicht 155g

Parametern


	We	erte	Genauigkeit
	min	max	
Spannung (V)	24,0		± 2 %
Strom (A)	0 1,5		-
Rauschen (%)	1		-
Wirkungsgrad (%)	81		-

Eigenschaften -

- Spannungsverteiler mit Vertiefungen für die Platzierung der Module auf dem Tisch, besonders passend für alle Aufgaben mit PC Unterstützung
- Enthält einen Raum für Module und getrennten Raum für das Messmodul (ADDU)
- Raum für 4 (10x10cm) oder 8 (5x10cm) Module
- Eine Alternative ist ein Raum für Module des Dreiphasensystems oder Motor Generator Regelstrecke und bis zu 3 andere 5x10cm Module. Für Regelungstechnik Aufgaben empfehlen wir noch die zusätzliche Modulplatte 2 für 8 Module Größe 5x10cm
- Speisung durch vergoldete 2 mm Stecker, Ausschalter mit LED Anzeige
- Abmessungen 490 x 400 x 45 mm. Gewicht 2200g


8.2

Eigenschaften -

- Spannungsverteiler für die Platzierung der Module auf dem Tisch
- Bietet Raum für 4 Module Größe 10x10cm oder 8 Module Größe 5x10cm
- Passend für alle Aufgaben ohne Messmodul (ADDU), oder zusammen mit Modulplatte 1 für die Aufgaben von Bereich der Regelungstechnik
- Speisung durch vergoldete 2mm Stecker
- Abmessungen 490 x 185 x 35 mm. Gewicht 730g

Verbindungskabel


Eigenschaften -

- Flexibles Kabel mit Silikon Isolation
- Querschnitt des Kupferkernes 0,25 mm²
- Verschiedene Länge mit verschieden Farben der Isolation
- Vergoldete Stecker mit Durchmesser 1,5 mm

Liste

Farbe	Länge (mm)	Satz Nr. 1 (Stk)	Satz Nr. 2 (Stk)
gelb	150	10	10
blau	200	10	10
grün	300	8	10
rot	400	4	10
weiss	500	2	4

Verbindungskabel für die Speisung der Module

Eigenschaften ——————

- Flexibles Kabel mit Silikon Isolation
- Querschnitt des Kupferkernes 0,25 mm²
- Vergoldete Stecker mit Durchmesser 1,5 mm

Farbe	Länge (mm)	Satz Nr. 1 (Stk)	Satz Nr. 2 (Stk)
rot / weiss	150	8	8
grün / weiss	150	8	8

Doppelkabel

Eigenschaften -

- Flexibles Doppelkabel mit Silikon Isolation
- Querschnitt des Kupferkernes 0,25 mm²
- Lange und kurze Messkabel
- Vergoldete Stecker mit Durchmesser 1,5 mm
- Farbe der Kabel gelb und blau, Farbe der Endung rot und grün

Liste

Farbe	Länge (mm)	Satz Nr. 1 (Stk)	Satz Nr. 2 (Stk)
gelb	250	1	-
blau	250	1	-
gelb	550	2	-
blau	550	1	-

Adapterkabel

Eigenschaften -

- Flexibles Kabel mit Silikon Isolation
- Querschnitt des Kupferkernes 0,25 mm²
- Adapter 4 mm System oder BNC Stecker auf 1,5 mm
- Vergoldete Stecker mit Durchmesser 1,5 mm

Farbe	Länge (mm)	Satz Nr. 1 (Stk)	Satz Nr. 2 (Stk)
rot, 4mm	500	-	-
grün, 4mm	550	-	-
schwarz, BNC	900	-	-

Speisungskabel 2mm

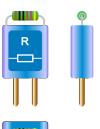
Eigenschaften -

- Flexibles Speisungskabel mit Silikon Isolation
- Querschnitt des Kupferkernes 0,50 mm²
- Verschiedene Länge und Farben auf Anfrage
- Vergoldete Stecker mit Durchmesser 2 mm
- Hohe Zuverlässigkeit und mechanische Festigkeit

Liste

Farbe	Länge (mm)	Satz Nr. 1 (Stk)	Satz Nr.2 (Stk)
rot	150	-	1
grün	150	-	1
rot	300	1	1
grün	300	1	1
rot	600	-	1
grün	600	-	1

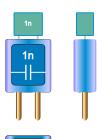
Versorgungsskabel 4mm



Eigenschaften -

- Flexibles Kabel mit Silikon Isolation
- Querschnitt des Kupferkernes 0,75 mm²
- Nickel Konektoren mit Durchmesser 4 mm
- Hohe Zuverlässigkeit und mechanische Festigkeit

Liste


Zur Lieferung verschiedene Kombinationen von Farben und Längen der Kabel.

- Hohe Genauigkeit
- Hohe Stabilität der Parameter
- Sehr gute parasitäre Eigenschaften
- Vergoldete Stecker mit 5 mm Abstand
- Einzeln oder in ganzen Sätzen lieferbar
- Andere Werte auf Anfrage
- Abmessungen des Sockels (ohne Baustein und Stecker) 12 x 14 x 6 mm

WIDERSTÄNDE			-	1
Wert	Tol	TC	Satz Nr. 1	Satz Nr. 2
(Ω)	(%)	(ppm/°C)	(Stk)	(Stk)
1	0,5	100	•	• •
10	0,2	50	••	• •
20	0,2	50		
50	0,2	25		
100	0,1	25	••	• •
200	0,1	25	•	•
500	0,1	25	•	•
1k	0,1	25	• •	• •
2k	0,1	25	•	•
5k	0,1	25	•	•
10k	0,1	25	••	• •
20k	0,1	25	•	•
50k	0,1	25	•	•


WIDERSTÄNDE				00k
Wert	Tol	TC	Satz Nr. 1	Satz Nr. 2
(Ω)	(%)	(ppm/°C)	(Stk)	(Stk)
100k	0,1	25	••	••
200k	0,1	25	•	•
500k	0,1	25	•	•
1M	0,1	25	••	• •
2M	0,1	50		
5M	0,1	50		
10M	0,1	50	•	• •
120R	0,1	50		
350R	0,1	50		
505R	0,1	50		
82K	0,5	50		

- Hohe Genauigkeit
- Hohe Stabilität der Parameter
- Sehr gute parasitäre Eigenschaften
- Vergoldete Stecker mit 5 mm Abstand
- Einzeln oder in ganzen Sätzen lieferbar
- Andere Werte auf Anfrage
- Abmessungen des Sockels (ohne Baustein und Stecker) 12 x 14 x 6 mm

Polypropylen Kondensatoren			n -	
Wert	Tol	TC	Satz Nr. 1	Satz Nr. 2
(F)	(%)	(ppm/°C)	(Stk)	(Stk)
100p	1	200		
330p	1	200		
1n	1	200	••	• •
2n2	1	200		
3n3	1	200	•	•
6n8	1	200		
10n	1	200	••	• •
22n	1	200		
33n	1	200	•	•
68n	1	200		
100n	1	200	• •	• •
330n	1	200		
1000n	5	200		

Bipolare elektrolytische Kondensatoren			<u> </u>	
Wert	Tol	U	Satz Nr. 1	Satz Nr. 2
(F)	(%)	(V)	(Stk)	(Stk)
1μ	10	50	•	•
3μ3	10	50	•	•
10µ	10	50	•	•
33µ	10	35	•	•
100µ	10	35	•	•
330µ	20	35		

- Hohe Genauigkeit
- Hohe Stabilität der Parameter
- Sehr gute parasitäre Eigenschaften
- Vergoldete Stecker mit 5 mm Abstand
- Einzeln oder in ganzen Sätzen lieferbar
- Andere Werte auf Anfrage
- Abmessungen des Sockels (ohne Baustein und Stecker) 12 x 14 x 6 mm

Dioden		D		
Marke	Teil	Тур	Satz Nr. 1 (Stk)	Satz Nr. 2 (Stk)
D	Si	1N4148	••••	•••
SD	Schottky	BAT48	•	•
GD	Germanium	1N60		•
2V4	Zener	BZX55C 2V4	•	•
3V0	Zener	BZX55C 3V0	•	•
3V6	Zener	BZX55C 3V6	•	•
4V3	Zener	BZK55C 4V3	•	•
5V1	Zener	BZX55C 5V1		
5V6	Zener	BZX55C 5V6		•
6V2	Zener	BZX55C 6V2		
6V8	Zener	BZX55C 6V8		•
7V5	Zener	BZX55C 7V5		
8V2	Zener	BZX55C 8V2		•

LEDs			R 3	
Marke	Teil	Größe (mm)	Satz Nr. 1 (Stk)	Satz Nr. 2 (Stk)
R	LED rot	3	••	• •
G	LED grün	3	• •	• •
Y	LED gelb	3	•	•
В	LED blau	3	•	•
w	LED weiss	3		
IR	LED infra	3		•
Spe	zielle Baust	eine		
Marke	Teil	Тур	Satz Nr. 1 (Stk)	Satz Nr. 2 (Stk)
	Brücke		• • • •	• • • •
NTC	NTC 1k0	NTC 1k	•	•
PTC	PTC 50 mA	RXE 005	•	•

10.4 Sätze SCO 1-2

Satz Nr. 1

- Standard Satz 60 Elemente
- 23 präzise Widerstände
- 8 präzise Kondensatoren
- 5 Bipolarkondensatoren
- 9 Dioden
- 6 LED Dioden
- 1 spezielles Element
- 8 Brücke

Satz Nr. 2

- Erweiterter Satz 75 Elemente
- 25 präzise Widerstände
- 11 präzise Kondensatoren
- 5 Bipolarkondensatoren
- 16 Dioden
- 6 LED Dioden
- 2 spezielle Elemente
- 10 Brücke